[Physik] Geschwindigkeitsfilter bei Ionenstrahlen?

Guten Tag,

ich benötige bei der Aufgabe noch etwas Hilfe, um sie verstehen zu können. Ich freue mich sehr auf eure hilfreichen Antworten.

[Hinweis des Lehrers zur Aufgabe:]

Ar^(+) Ionen haben die Ladung 2, Ar^(2+) Ionen die Ladung 2e. Verwenden Sie für die Masse der Argon-Ionen den Wert 39,948 * 10^(-27) kg.
  • Was sind überhaupt Argon Ionen?
  • Wieso ist die Ladung von Ar^(+) Ionen = 2 und nicht e, denn die Ladung von Ar^(2+) Ionen ist ja 2e.

[Hier meine bereits bestehenden Fragen:]

  1. Wie genau würdet ihr eine mögliche Antwort auf die Aufgabe 2.1 „Erklären Sie die Funktionsweise des Geschwindigkeitsfilters.“ formulieren? Mein Vorschlag: In einem Geschwindigkeitsfilter können mithilfe eines elektrischen und eines magnetischen Feldes Elektronen einer bestimmten Geschwindigkeit aus einem Strom von geladenen Teilchen mit unterschiedlichen Geschwindigkeiten gewonnen werden.
  2. Aber woran erkenne ich überhaupt, dass es sich hier um Elektronen handelt? Es handelt sich ja um Argon Ionen und das verwirrt mich.
  3. Ich benötige noch viel Hilfe bei dieser ganzen Aufgabe 2 (2.1 und 2.2) 🤯

[Damit ihr mir leichter bei der Aufgabe helfen könnt, schreibe ich euch hier die Aufgaben 2.1 und 2.2 als Text hin, damit ihr den Text als Zitat in eurer Antwort verwenden könnt.]

2.1

Erklären Sie die Funktionsweise des Geschwindigkeitsfilters.

Weisen Sie nach, dass die Ladung und die Masse der Ionen keinen Einfluss auf die Geschwindigkeit der gefilterten Ionen des Strahls haben.

2.2

Nach Verlassen des Filters bewegt sich der Strahl aus Ar^(+) -Ionen und Ar^(2+) -Ionen durch eine Blende in einem Magnetfeld B2 mit der gleichen Flussdichte B2 = B1 weiter und wird auf einen Detektor abgelenkt, der die Strahlen an zwei Stellen P1 und P2 registriert.

Geben Sie an, welche der Argon-Ionen im Punkt P1 bzw. im Punkt P2 auftreffen.

Begründen Sie Ihre Antwort.

Berechnen Sie die erforderliche Spannung am Kondensator des Geschwindigkeitsfilters, wenn der Auftreffort der Ar^(+) -Ionen von der Blende den Abstand a = 20 mm haben soll.

Bild zum Beitrag
Geschwindigkeit, Elektrodynamik, Ionen, Kondensator, Argon, elektrisches Feld, Flussdichte, Magnetfeld, Plattenkondensator
[Physik] Richtung elektrisches Feld im Kondensator angeben?

Guten Tag,

ich benötige noch ein bisschen Hilfe, um die Aufgabe vollständig zu verstehen. Ich freue mich sehr auf eure hilfreichen Antworten zu meinen Fragen (siehe unten).

  • Die Aufgaben a) und b) habe ich verstanden und bereits gelöst.
  • Die Aufgabe c) ist für mich nicht relevant.
  • Die Aufgabe d) verstehe ich leider noch nicht so gut.
  • Da das Magnetfeld in die Zeichenebene zeigt (Drei-Finger-Regel der linken Hand), werden die Elektronen innerhalb des Kondensators nach unten abgelenkt. Das bedeutet, dass die Lorentzkraft innerhalb des Kondensators nach unten zeigt. Somit muss die Coulombkraft (elektrische Kraft) innerhalb des Kondensators nach oben zeigen. Dies wird erreicht, wenn die untere Platte negativ geladen ist und die obere Platte positiv.
  • Nun bin ich mir aber unsicher, was die Richtung des elektrischen Felds im Kondensator ist, wenn die untere Platte negativ geladen ist und die obere Platte positiv geladen ist.
  • Wie man U (Plattenspannung) berechnet, verstehe ich. Denn die Kondendatorspannung/Plattenspannung ist ja so eingestellt, dass sich die Elektronen im Kondensator unabgelenkt entlang der x-Achse bewegen. Somit muss Fl (Lorentzkraft) = Fc (Coulombkraft) sein.
  • Die Aufgabe e) ist für mich nicht relevant.
Bild zum Beitrag
Geschwindigkeit, Strom, Energie, Spannung, Beschleunigung, Elektrizität, Formel, Kondensator, Magnetismus, Physiker, elektrisches Feld, Elektronen, Magnetfeld
[Physik] Geladene Teilchen im elektrischen Längsfeld?

Guten Tag,

ich habe noch ein paar Fragen zum Thema „Geladene Teilchen im elektrischen Längsfeld“ und freue mich sehr auf eure ausführlichen und leicht verständlichen Antworten.

  1. a): Was versteht man überhaupt unter der Coulombkraft? Hierfür würde ich mit gerne eine leicht verständliche Definition aufschrieben.
  2. a): Die Coulombkraft berechnet man ja mit Fc = q * E. In diesem Fall ist die Ladung q ja ein Elektron. Also folgt darauf Fc = e * E. Aber nun mein großes Problem: Wieso wurde hier bei a) für das „e“ 1,6 * 10^(-15) C geschrieben? Woher kommt die Einheit Coulomb für das „e“?
  3. a): Und wieso kann ich für das „e“ nicht im Taschenrechner unter „constants“ „me (ElectrnMass)“ nehmen? Wieso ist me (ElectrnMass) = 9,11 * 10^(-31) und somit ungleich 1,6 * 10^(-15)? Ich dachte, dass das e die Masse des Elektrons ist. Ich würde mich über eine ganz genaue Erklärung hinsichtlich dem Unterschied zwischen „e“ und „me“ sehr freuen.
  4. a): Wäre im Schaubild hier nicht ein Elektron, sondern ein Proton, abgebildet, was würde man dann zur Berechnung der Coulombkraft schreiben? Fc = q * E = … Wozu würde nun das q werden, wenn beim Schaubild ein Proton abgebildet wäre?
  5. b): Wieso berechnet man die Beschleunigung a des Elektrons mit a = Fc/me? Wie kommt man darauf? Beim Thema „Bewegungen und Kräfte“ hat man die Beschleunigung a mit a = (Differenz v) / (Differenz t) berechnet. Aber wie kommt man hier nun auf a = Fc / me? Über eine genaue Erklärung würde ich mich sehr freuen.
Bild zum Beitrag
Geschwindigkeit, Strom, Energie, Elektrizität, Formel, Physiker, elektrisches Feld, Elektronen
Häufiges Missverständnis der Elektrodynamik?

Guten Tag,

Mich interessiert einfach nur mal ob ihr auch dieses Missverständnis der Elektrodynamik bezüglich der Stromübertragung hattet.

Es ist nämlich so, das viele Menschen glauben, der Strom werde durch die Elektronen im Leiter einer Schaltung übertragen. In Wirklichkeit erfolgt die Energieübertragung durch die elektrischen Felder, während die Elektronen im Leiter nur eine Driftbewegung ausführen. Das elektrische Feld erzeugt eine Kraft auf die Elektronen, die dann durch den Leiter strömen.

Elektrische Felder sind Felder welche bei einem Potentialunterschied (Spannung) zwischen dem Positiven und Negativen Pol durch eine Spannungsquelle in einer Schaltung auftreten. Ein Elektrischen Feld beeinflusst alle geladenen Teilchen und erstreckt sich über den gesamten Leiter. Das Feld beeinflusst ebenfalls umgebende elektrisch geladene Komponente und Leiter in der Schaltung. Das führt zur Übertragung von elektrischer Energie. Sprich drahtlose Energieübertragung durch das übertragen von elektrischen Energie über die Elektromagnetischen Felder.

Ein weiteres Missverständnis betrifft die Geschwindigkeit der Elektronen. Obwohl der elektrische Strom fast sofort zu fließen beginnt, bewegen sich die Elektronen selbst nur mit einer sehr geringen Driftgeschwindigkeit. Die elektrischen Felder sorgen jedoch für eine schnelle Signalübertragung in der Schaltung.

(Das kann man alles mit Hilfe den Maxwell Gleichungen beweisen jedoch würde das zu lange dauern)

Insgesamt ist es also tatsächlich so, dass es die elektrischen Felder sind, die die Energieübertragung ermöglichen, während die Elektronen lediglich eine relativ langsame Driftbewegung ausführen.

LG

Strom, Energie, Elektrotechnik, Spannung, Elektrizität, elektrisches Feld, Elektromagnetismus, Elektronen, Stromkreis

Meistgelesene Fragen zum Thema Elektrisches Feld